Thermal Drift in On-Chip: Photonic crystal sensors (PCS) have gained significant traction in lab-on-a-chip technologies due to their high sensitivity and compact nature. However, one of the fundamental challenges in their deployment is thermal drift, a phenomenon where temperature fluctuations cause changes in the optical properties of the sensor, leading to measurement inaccuracies. This article […]
Tag: Photonic Crystal Sensors

Finite Element Analysis (FEA) plays a crucial role in optimizing the integration of photonic crystal (PhC) sensors with silicon photonics. This integration is fundamental for advancing optical sensing technologies used in biomedical applications, environmental monitoring, and high-speed optical communication. Photonic crystals, with their periodic dielectric structures, exhibit unique light-manipulation properties, such as photonic bandgaps, that […]

IntroductionTamm-plasmon-polaritons (TPPs) are optical surface states that arise at the interface between a metallic film and a photonic crystal (PC). Unlike traditional surface plasmon polaritons (SPPs), which require specific conditions for excitation (such as total internal reflection in a prism-coupled system), TPPs can be directly excited in normal incidence configurations, making them ideal for biosensing […]

Photonic crystals (PhCs) are periodic dielectric structures that affect the motion of photons in much the same way that the periodic potential in a semiconductor crystal affects electrons. The ability of photonic crystals to create photonic band gaps (PBGs) has led to numerous applications, including optical filters, waveguides, and more recently, sensors. Among the various […]